Python Mastery Curriculum

Complete roadmap to master Python programming from beginner to advanced

From Zero to Professional Developer

Course Philosophy

This curriculum follows a hands-on, project-based approach with real-world applications. Each concept builds upon previous knowledge, ensuring solid foundations before advancing.

---

📚 Module 1: Foundations (Weeks 1-3)

1.1 Getting Started

  • Python Setup & Environment

- Installing Python (3.11+) - IDE setup (VS Code/PyCharm) - Virtual environments (venv, pip) - Jupyter notebooks

1.2 Core Fundamentals

  • Variables & Data Types

- Basic types (int, float, str, bool) - Type conversion - Input/output operations - Memory management basics

  • Control Flow

- If/elif/else statements - Comparison & logical operators - Match statements (Python 3.10+) - Ternary operators

  • Loops & Iterations

- For loops & range() - While loops - Break, continue, pass - Loop else clauses

1.3 Data Structures

  • Lists

- Creation & manipulation - List comprehensions - Slicing & indexing

  • Dictionaries

- Key-value operations - Dictionary comprehensions - Nested dictionaries

  • Tuples

- Immutability concepts - Unpacking & packing - Named tuples

  • Sets

- Set operations - Mathematical applications - Frozen sets

🎯 Project 1: Personal Finance Tracker

Build a CLI application to track expenses, categorize spending, and generate reports.

---

📚 Module 2: Intermediate Concepts (Weeks 4-6)

2.1 Functions & Modules

  • Functions Deep Dive

- Parameters & arguments - args and *kwargs - Lambda functions - Decorators basics - Type hints

  • Modules & Packages

- Creating modules - Package structure - __init__.py files - Import mechanisms

2.2 Object-Oriented Programming

  • Classes & Objects

- Class definition - Constructors & destructors - Instance vs class attributes - Methods types

  • OOP Principles

- Inheritance - Polymorphism - Encapsulation - Abstraction - SOLID principles

  • Advanced OOP

- Multiple inheritance - Method Resolution Order (MRO) - Properties & descriptors - Magic methods - Dataclasses

2.3 Error Handling & Debugging

  • Exception Handling

- Try/except/else/finally - Custom exceptions - Exception hierarchy - Context managers

  • Debugging Techniques

- Using debugger - Logging best practices - Unit testing basics - Assert statements

🎯 Project 2: Task Management System

Create an OOP-based task manager with priorities, deadlines, and persistence.

---

📚 Module 3: Advanced Python (Weeks 7-9)

3.1 Functional Programming

  • Functional Concepts

- Pure functions - Higher-order functions - Map, filter, reduce - Closures - Partial functions

3.2 Advanced Features

  • Iterators & Generators

- Iterator protocol - Generator functions - Generator expressions - yield from statement

  • Decorators & Context Managers

- Function decorators - Class decorators - Decorator patterns - Custom context managers

  • Metaclasses & Descriptors

- Understanding metaclasses - Custom descriptors - Property decorators

3.3 Concurrency & Parallelism

  • Threading

- Thread basics - GIL (Global Interpreter Lock) - Thread synchronization - Thread pools

  • Multiprocessing

- Process creation - Inter-process communication - Process pools - Shared memory

  • Async Programming

- async/await syntax - Coroutines - AsyncIO library - Concurrent futures

🎯 Project 3: Web Scraper with Async

Build a multi-threaded web scraper with async capabilities and data processing.

---

📚 Module 4: Data & File Handling (Weeks 10-11)

4.1 File Operations

  • File I/O

- Reading & writing files - Binary files - CSV, JSON handling - XML processing

  • Path Management

- pathlib module - OS operations - Directory traversal

4.2 Data Processing

  • Regular Expressions

- Pattern matching - Groups & captures - Lookarounds - Practical applications

  • Data Serialization

- Pickle - JSON - YAML - Protocol buffers

4.3 Database Integration

  • SQL Databases

- SQLite basics - SQLAlchemy ORM - Connection pooling - Transactions

  • NoSQL Databases

- MongoDB basics - Redis operations - Key-value stores

🎯 Project 4: Data Pipeline

Create an ETL pipeline that extracts, transforms, and loads data from multiple sources.

---

📚 Module 5: Web Development (Weeks 12-14)

5.1 Web Frameworks

  • Flask Fundamentals

- Routes & views - Templates (Jinja2) - Forms & validation - Sessions & cookies

  • Django Introduction

- MVT architecture - Models & migrations - Admin interface - Authentication

5.2 APIs & Microservices

  • RESTful APIs

- HTTP methods - Status codes - API design principles - Documentation (Swagger)

  • FastAPI

- Type validation - Async endpoints - Dependency injection - Background tasks

5.3 Frontend Integration

  • Template Engines

- Dynamic content - AJAX integration - WebSockets - Real-time features

🎯 Project 5: Full-Stack Blog Platform

Build a complete blog with user authentication, CRUD operations, and API.

---

📚 Module 6: Data Science & ML (Weeks 15-16)

6.1 Scientific Computing

  • NumPy

- Arrays & operations - Broadcasting - Linear algebra - Random numbers

  • Pandas

- DataFrames - Data cleaning - Grouping & aggregation - Time series

6.2 Visualization

  • Matplotlib & Seaborn

- Plot types - Customization - Statistical plots - Interactive visualizations

6.3 Machine Learning Basics

  • Scikit-learn

- Classification - Regression - Clustering - Model evaluation

🎯 Project 6: Data Analysis Dashboard

Create an interactive dashboard analyzing real-world dataset with ML predictions.

---

📚 Module 7: DevOps & Deployment (Weeks 17-18)

7.1 Testing

  • Unit Testing

- pytest framework - Fixtures - Mocking - Coverage reports

  • Integration Testing

- API testing - Database testing - End-to-end tests

7.2 CI/CD

  • Version Control

- Git advanced - GitHub Actions - GitLab CI - Branch strategies

  • Containerization

- Docker basics - Dockerfile - Docker Compose - Container orchestration

7.3 Deployment

  • Cloud Platforms

- AWS basics - Heroku deployment - Google Cloud - Azure functions

  • Monitoring

- Logging strategies - Performance monitoring - Error tracking - Metrics collection

🎯 Project 7: Production-Ready API

Deploy a fully tested, containerized API with CI/CD pipeline.

---

📚 Module 8: Specializations (Weeks 19-20)

Choose Your Path:

#### 🤖 Path A: AI/ML Engineering

  • Deep Learning (TensorFlow/PyTorch)
  • NLP fundamentals
  • Computer Vision
  • Model deployment

#### 🌐 Path B: Backend Engineering

  • Microservices architecture
  • Message queues (RabbitMQ/Kafka)
  • GraphQL
  • System design

#### 📊 Path C: Data Engineering

  • Apache Spark
  • Airflow pipelines
  • Data warehousing
  • Stream processing

#### 🔒 Path D: Security & Automation

  • Cryptography
  • Penetration testing
  • Security auditing
  • DevSecOps

🎯 Capstone Project

Build a production-grade application in your chosen specialization.

---

📖 Learning Resources

Books

1. "Python Crash Course" - Eric Matthes 2. "Fluent Python" - Luciano Ramalho 3. "Clean Code" - Robert Martin 4. "Design Patterns" - Gang of Four

Online Platforms

  • Python.org documentation
  • Real Python tutorials
  • Corey Schafer YouTube
  • ArjanCodes patterns

Practice Platforms

  • LeetCode (algorithms)
  • HackerRank (problem solving)
  • Kaggle (data science)
  • CodeWars (challenges)

---

🎯 Assessment Milestones

Week 3: Foundation Assessment

  • Variable manipulation
  • Data structure operations
  • Control flow mastery

Week 6: OOP Assessment

  • Class design
  • Inheritance implementation
  • Exception handling

Week 9: Advanced Assessment

  • Decorator creation
  • Async programming
  • Performance optimization

Week 14: Web Assessment

  • API development
  • Database integration
  • Security implementation

Week 20: Final Assessment

  • System design
  • Code review
  • Portfolio presentation

---

💡 Success Tips

1. Code Daily: Minimum 1-2 hours of hands-on coding 2. Build Projects: Apply concepts immediately 3. Read Others' Code: Study open-source projects 4. Contribute: Make pull requests to projects 5. Network: Join Python communities 6. Document: Write about what you learn 7. Review: Regularly revisit fundamentals 8. Experiment: Try different approaches 9. Debug: Learn from errors 10. Teach: Explain concepts to others

---

🚀 Career Preparation

Portfolio Development

  • GitHub profile optimization
  • Project documentation
  • Code quality standards
  • Live demonstrations

Interview Preparation

  • Data structures & algorithms
  • System design basics
  • Behavioral questions
  • Code challenges

Professional Skills

  • Code review practices
  • Agile methodologies
  • Team collaboration
  • Technical writing

---

📊 Progress Tracking

Use this checklist to track your journey:

  • [ ] Environment setup complete
  • [ ] Module 1: Foundations
  • [ ] Module 2: Intermediate
  • [ ] Module 3: Advanced
  • [ ] Module 4: Data Handling
  • [ ] Module 5: Web Development
  • [ ] Module 6: Data Science
  • [ ] Module 7: DevOps
  • [ ] Module 8: Specialization
  • [ ] Capstone project
  • [ ] Portfolio ready
  • [ ] Job ready!

---

Remember: Becoming a professional Python developer is a marathon, not a sprint. Focus on understanding concepts deeply rather than rushing through topics. Happy coding! 🐍